Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of a constitutive model for clays and sands: Part II – clay behaviour

Identifieur interne : 001907 ( Main/Exploration ); précédent : 001906; suivant : 001908

Evaluation of a constitutive model for clays and sands: Part II – clay behaviour

Auteurs : Juan M. Pestana [États-Unis] ; Andrew J. Whittle [États-Unis] ; Antonio Gens [Espagne]

Source :

RBID : ISTEX:C01AD7535654695FD966482B395255F37AF7B3F6

Descripteurs français

English descriptors

Abstract

The undrained response of cohesive soils is of paramount importance in geomechanics and it has been modelled extensively for the last 50 years. In comparison, drained behaviour of clays has received only modest attention. Drained and undrained behaviour is significantly affected by past consolidation stress history. This paper evaluates the capabilities of the MIT‐S1 effective stress model, described in a companion paper, for predicting the anisotropic stress–strain–strength behaviour of clays. The paper illustrates the selection of model parameters for Lower Cromer Till, using data from standard types of laboratory tests. Comparison of model simulations with measured response for Lower Cromer Till and Boston Blue Clay illustrate model capabilities. The work focuses initially on comparisons of model predictions with measurements from undrained triaxial and plane strain tests on initially K0‐consolidated specimens. Comparisons with measured data from undrained shear tests performed in different modes of shearing for LCT and BBC show that the model: (a) gives excellent predictions of maximum shear stress conditions and accurately describes the non‐linear shear stress–strain behaviour; (b) accurately describes the anisotropic shear stress–strain–strength conditions for different consolidation stress histories; and (c) gives realistic description of mobilized friction angles, especially at large OCR's. The paper then focuses on the effects of consolidation stress history for isotropically consolidated specimens of resedimented Lower Cromer Till and Boston Blue Clay. Finally, the paper compares model predictions for drained shear tests on K0 and isotropically consolidated specimens with overconsolidation ratios, OCR⩽10, used to evaluate particular aspects of the critical state framework of soil behaviour. Overall, the model gives excellent predictions of the effect of initial anisotropy and overconsolidation stress history on the shear stress–strain and volumetric behaviour of clays. Copyright © 2002 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nag.238


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of a constitutive model for clays and sands: Part II – clay behaviour</title>
<author>
<name sortKey="Pestana, Juan M" sort="Pestana, Juan M" uniqKey="Pestana J" first="Juan M." last="Pestana">Juan M. Pestana</name>
</author>
<author>
<name sortKey="Whittle, Andrew J" sort="Whittle, Andrew J" uniqKey="Whittle A" first="Andrew J." last="Whittle">Andrew J. Whittle</name>
</author>
<author>
<name sortKey="Gens, Antonio" sort="Gens, Antonio" uniqKey="Gens A" first="Antonio" last="Gens">Antonio Gens</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C01AD7535654695FD966482B395255F37AF7B3F6</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/nag.238</idno>
<idno type="url">https://api.istex.fr/document/C01AD7535654695FD966482B395255F37AF7B3F6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000005</idno>
<idno type="wicri:Area/Istex/Curation">000005</idno>
<idno type="wicri:Area/Istex/Checkpoint">001021</idno>
<idno type="wicri:doubleKey">0363-9061:2002:Pestana J:evaluation:of:a</idno>
<idno type="wicri:Area/Main/Merge">001987</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:02-0491549</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000649</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000143</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000617</idno>
<idno type="wicri:doubleKey">0363-9061:2002:Pestana J:evaluation:of:a</idno>
<idno type="wicri:Area/Main/Merge">001A70</idno>
<idno type="wicri:Area/Main/Curation">001907</idno>
<idno type="wicri:Area/Main/Exploration">001907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of a constitutive model for clays and sands: Part II – clay behaviour</title>
<author>
<name sortKey="Pestana, Juan M" sort="Pestana, Juan M" uniqKey="Pestana J" first="Juan M." last="Pestana">Juan M. Pestana</name>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>University of California, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Whittle, Andrew J" sort="Whittle, Andrew J" uniqKey="Whittle A" first="Andrew J." last="Whittle">Andrew J. Whittle</name>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gens, Antonio" sort="Gens, Antonio" uniqKey="Gens A" first="Antonio" last="Gens">Antonio Gens</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Technical University of Catalonia, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title level="j" type="abbrev">Int. J. Numer. Anal. Meth. Geomech.</title>
<idno type="ISSN">0363-9061</idno>
<idno type="eISSN">1096-9853</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2002-09">2002-09</date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1123">1123</biblScope>
<biblScope unit="page" to="1146">1146</biblScope>
</imprint>
<idno type="ISSN">0363-9061</idno>
</series>
<idno type="istex">C01AD7535654695FD966482B395255F37AF7B3F6</idno>
<idno type="DOI">10.1002/nag.238</idno>
<idno type="ArticleID">NAG238</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0363-9061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy</term>
<term>Clay</term>
<term>Constitutive equation</term>
<term>Effective stress</term>
<term>Forecast model</term>
<term>Numerical simulation</term>
<term>Parameter estimation</term>
<term>Sand</term>
<term>Shear test</term>
<term>Soil consolidation</term>
<term>Soil mechanics</term>
<term>Stress analysis</term>
<term>Stress strain relation</term>
<term>Undrained soil test</term>
<term>Void fraction</term>
<term>anisotropy</term>
<term>clay behaviour</term>
<term>stress history</term>
<term>undrained shear strength</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse contrainte</term>
<term>Anisotropie</term>
<term>Argile</term>
<term>Consolidation sol</term>
<term>Contrainte effective</term>
<term>Equation constitutive</term>
<term>Essai cisaillement</term>
<term>Essai non drainé</term>
<term>Estimation paramètre</term>
<term>Fraction vide</term>
<term>Modèle prévision</term>
<term>Mécanique sol</term>
<term>Relation contrainte déformation</term>
<term>Sable</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The undrained response of cohesive soils is of paramount importance in geomechanics and it has been modelled extensively for the last 50 years. In comparison, drained behaviour of clays has received only modest attention. Drained and undrained behaviour is significantly affected by past consolidation stress history. This paper evaluates the capabilities of the MIT‐S1 effective stress model, described in a companion paper, for predicting the anisotropic stress–strain–strength behaviour of clays. The paper illustrates the selection of model parameters for Lower Cromer Till, using data from standard types of laboratory tests. Comparison of model simulations with measured response for Lower Cromer Till and Boston Blue Clay illustrate model capabilities. The work focuses initially on comparisons of model predictions with measurements from undrained triaxial and plane strain tests on initially K0‐consolidated specimens. Comparisons with measured data from undrained shear tests performed in different modes of shearing for LCT and BBC show that the model: (a) gives excellent predictions of maximum shear stress conditions and accurately describes the non‐linear shear stress–strain behaviour; (b) accurately describes the anisotropic shear stress–strain–strength conditions for different consolidation stress histories; and (c) gives realistic description of mobilized friction angles, especially at large OCR's. The paper then focuses on the effects of consolidation stress history for isotropically consolidated specimens of resedimented Lower Cromer Till and Boston Blue Clay. Finally, the paper compares model predictions for drained shear tests on K0 and isotropically consolidated specimens with overconsolidation ratios, OCR⩽10, used to evaluate particular aspects of the critical state framework of soil behaviour. Overall, the model gives excellent predictions of the effect of initial anisotropy and overconsolidation stress history on the shear stress–strain and volumetric behaviour of clays. Copyright © 2002 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Catalogne</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Barcelone</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Pestana, Juan M" sort="Pestana, Juan M" uniqKey="Pestana J" first="Juan M." last="Pestana">Juan M. Pestana</name>
</region>
<name sortKey="Whittle, Andrew J" sort="Whittle, Andrew J" uniqKey="Whittle A" first="Andrew J." last="Whittle">Andrew J. Whittle</name>
</country>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Gens, Antonio" sort="Gens, Antonio" uniqKey="Gens A" first="Antonio" last="Gens">Antonio Gens</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:C01AD7535654695FD966482B395255F37AF7B3F6
   |texte=   Evaluation of a constitutive model for clays and sands: Part II – clay behaviour
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024